Electric Bike History, patents from the 1800’s

November 9, 2013

I was looking at patents recently, because they show the internal workings of recent drives that have been introduced. This way, I can find out more about how they work, and the details are something which manufacturers seem to think most of their customers might find to be a bit boring. So as a result, only the most basic info is usually squeezed into the short PR blurbs that are published and then re-pasted everywhere. But…you didn’t come to electricbike.com for just basic info, right? You can get that anywhere with a quick Google.

I stumbled across a few interesting older patents, and thought our readers would find them amusing (I’m posting them as large as possible so you can see more detail). There is an old proverb that “There is nothing new under the sun“, and “Everything that is old is new again“. So…think about these patents the next time you read an advertisement about a new E-bike product that is “Revolutionary!”

Edit: after publishing this article, I received many links from our readers for additional E-bikes that were not well known. Thanks you all for your help!

1881 Trouvé Tricycle

In 1881, Gustave Trouvé (from France) wanted to conduct experiments with electric drive. He used a British tricycle called a Starley Coventry Lever Tricycle. 

This lever-drive tricycle was produced in 1877-78, but by 1881 the Coventry factory had upgraded the new models to a modern rotary pedal drive. This would have likely made the older lever-drives less expensive on the used bicycle market.

The only known drawing of this historic event was published in the French science magazine  “Physique et chimie populaires” Volume 2, by Alexis Clerc, 1881-1883.

The similar Ayrton & Perry” that is also from 1881 deserves honorable mention, but it does not have pedals.


The 1881 Trouvé Electric Tricycle. The “M” is for Monsieur

1892 Graffigny Tricycle

Here is a link sent to me from endless-sphere member “Lock”: the 1892 Graffigny electric tricycle from the archives of “Eureka” the inventors forum:


The 1892 Graffigny tricycle

The 1892 Graffigny tricycle


1895 Bolton

Here’s a direct-drive rear hub-motor patent from Ogden Bolton in 1895 (Patent No. US552271). The rear hub is a very recognizable permanent-magnet direct-current (PMDC) radial-flux outrunner. It is brushed, rather than brushless, but…for an antique, it looks surprisingly modern. DD hubs remain relevant because they can be powered at very high watt-levels that would break bicycle chains, and they also remain one of the quietest drives, so I suspect they will survive in some form for quite some time.

118 years old (1895-2013)

118 years old (1895-2013), using 10-volts and up to 100-Amps.


This 118 year-old electric bicycle patent remains relevant today.


Six poles, 8 turns, six compound magnets, radial-flux, permanent-magnet, brushed outrunner…you can see the 6 pawls in the center for the freewheeling ratchet  mechanism.


1896 Theryc

No sooner had the idea of the new hubmotors become known, that the next step was needed to find some way to increase the power and efficiency by getting the motor to spin much faster than the wheel. This patent from 1896 (only a year later!) from Charles Theryc, shows a brushed planetary-geared hub-motor! The sun-gear is a 10T, the single planet-gear is a 24T, and the ring-gear is a 56T, for a total RPM reduction of  5.6:1


The 1896 Theryc geared hub-motor. I don’t know which one of these “finds” were the most exciting for me, but this geared hub-motor is near the top of the list!


The 5.6:1 ratio is interesting, it is approximately the same ratio that modern geared hubs use, such as the eZee, BMC, and Bafang-BPM.


Here’s an example of the popular BMC geared hub.


1896 O’Brien

Here’s an obscure reference to an electric bicycle built in new York by James O’Brien in 1896. The small motor is located just under the seat, and it states a woven silk belt drives the hub of the rear wheel.

The 1896 O'Brien

The 1896 O’Brien

1897 Libbey

Patent US596272 is quite an exciting find…It’s from inventor Hosea W. Libbey in 1897, and it is a mid-drive! I don’t see any pedals, but they were not required for the patent application. Having the motor separate from the wheel means that the motor is free to spin much faster than the wheel, and sprocket/chain gearing can greatly multiply the power density of the system. This means that a smaller non-hub motor can provide as much power as a larger motor that is located in the wheel, which is then restricted to spinning at the less-efficient lower RPMs of the wheel (only 333-RPMs for a 26-inch wheel at 26-MPH).

Unfortunately, this particular mid-drive only spins at the RPMs of the wheel, however it does move the weight of the motor to the center of the bike. The motor is a permanent-magnet dual-stator axial-flux style, with the rotor being the central section with a stator on either side.

The brushes are “Item R” in the drawing. Brushed DC (of course), and the battery is located in the frame triangle. The drive is two rod-actuated cranks (as opposed to sprocket and chain), 180-degrees apart in phase. The rear wheel appears to be two side-by-side wheels that are closely attached, and they have bow-shaped “leaf springs” that are mounted crosswise, that provide a crude rear suspension, to add to the spring-suspended seat.

The second page features the same bike frame, battery, and motor, but…configured as a friction-drive over the rear wheel. A purist might argue that the lack of pedals on the drawing makes this an “electric scooter”, but it clearly uses two crank-arms, to which pedals could be attached (I suspect he wanted to avoid licensing the existing chain & sprocket patents). Beat me with a stick if you wish, but I will continue to call this an electric bicycle.

The 1897 Libbey mid-drive.

The 1897 Libbey mid-drive.


1897 Humber

This is not a patent, but an advertisement for the British 1897 Humber electric tandem.

“The Humber Electric Tandem below, with four accumulators and an electric motor, plus pedal power from two riders, was exhibited at the Stanley Show in November 1897.”

This tandem électrique was an invention of the Frenchmen de Clerc and Pingault, and is ridden by the French bicycle racers Dacier and Jalabert. On May 22, 1897 this tandem rode one-kilometer in 57 seconds.

The 1897 Humber.

The 1897 Humber.


1898 Scott

Here is patent No. US598819, granted to Gordon J. Scott in 1898. If you haven’t seen this one before from similar E-bike patent searches (doesn’t everyone do this in their spare time?), it may be because it was filed as an electric “velocipede”. It is somewhat odd, in that…instead of a battery, the pedals spin a generator (dynamo), and the power from that dynamo drives a small motor. I suppose it might be called a “series drive”?

I know of one recent project where the pedals turned a generator that charged a battery pack (there was no chain connecting the BB to the rear wheel). The rear wheel was powered by a motor, and it was hoped that the pedaling would extend the battery to much farther than a full battery charge would normally provide. That real-world experiment proved that it was a very inefficient design, and the design shown here…would be even worse.

The 1898 Scott E-bike

The 1898 Scott E-bike


1899 Schnepf

Getting back to patents that actually work: Here’s patent US627066 from John Schnepf in 1899. The page shown here is the direct-drive motor that is concentric with a shaft that powers a roller atop the rear tire to make a “friction drive”. There is a second page in the patent that has a 90-degree geared reduction to allow the motor to spin much faster than the roller (which theoretically would help efficiency), so he was a creative inventor, but…it is the first design that has proven to be something that has continued to pop up the last 113 years because it is so easy for garage-builders to put one together.

A friction drive is the first electric bike system that I ever had. An ES builder called EVTodd designed a drive using the compact and powerful RC motors that had grown larger over the years, and had finally reached a large-enough size in 2010 where they were a viable option for driving an E-bike. This motor in the patent is a simple brushed radial-flux 2-pole / 3-magnet type, and even with the crude and simple materials of the day, it would have been capable of very high RPMs. This isn’t the earliest example of a friction-drive, but this one takes the form that modern friction-drives have proven will work well.

1899 Friction drive from John Schnepf.

1899 Friction drive from John Schnepf.

Here’s a picture of my personal friction-drive. In spite of it’s small size, I pump 36V X 30A = ~1,100W of power through it. I had to switch to a square-profile tread tire from a Beach Cruiser to get enough traction so that it wouldn’t slip at high power or when riding through a wet patch in the road.

A friction drive is probably the easiest E-bike system to make yourself.

A friction drive is probably the easiest E-bike system to make yourself.


1900 Hansel

I searched a little more, and found an incredibly modern non-hub mid-drive. Patent number US656323, by Aebert Hansel, applied for in 1899 and granted in 1900. It has two stages of reduction, and uses a frame-mounted jackshaft to power the left side of the wheel.

The 1900 Hansel non-hub left-side-drive.

The 1900 Hansel non-hub left-side-drive.

Here’s the bike that ES member “PaulD” used to win a major E-bike race in 2012. A small frame mounted motor in the triangle, driving a frame-mounted jackshaft, which drives the left side of the wheel. He could’ve used a larger motor with a lower Kv (RPMs per volt applied), but…that would have been larger, heavier, and less efficient:

A small frame mounted motor in the triangle, driving a frame-mounted jackshaft, whic drives the left side of the wheel.

PaulD’s race bike from 2012.

And, as if the patent above was not enough, Mr Hansel also patented a chain-less friction-drive, where the motor and the Bottom-Bracket (BB) sprocket share the jackshaft connection.

The 1900 Hansel patent also includes this step-through frame with a friction drive.

The 1900 Hansel patent also includes this step-through frame with a friction drive.


1917, Howard Hughes

Howard Hughes is a famous billionaire, but as a child he converted his bicycle to running on electric by using a 6-volt electric starter motor from a car, and a lead-acid car battery.

“Howard Hughes assembled what the paper called Houston’s first motorized bicycle at the age of 12 from parts of a motor that belonged to his father”

A young 12-year old Howard Hughes and his DIY 6-volt electric bike

1932 Philips

Here is a link to the 1932 Philips Simplex E-bike from the Netherlands. Thanks to E-biker “Kulle” from www.pedelecforum.de for the link


The 1932 Philips Simplex


1933 Juncker

This is a picture of the wonderful Dutch Juncker 1933 E-Bike. 80 years old, but…I would be happy to ride this today!

The 1933 Junckers from the Netherlands.

The 1933 Junckers from the Netherlands.


1938 McDonald

The next one I found was filed in 1938 and granted in 1939 (the year that WWII started), so it is understandable that it didn’t gain much notoriety at the time. It is Patent US2179418, from T.M. McDonald. It is noteworthy for three reasons. It is the earliest example I have found of a front-wheel electric hubmotor. Also, the battery is mounted centrally and very low, and this provides the best possible weight distribution (just like the 3rd Element eSpire). And lastly, it uses an induction motor, instead of permanent magnets. Due to the weak power of the common ferrite permanent-magnets of the day, using electromagnets in the stator and also the rotor would make this motor much more powerful than some of the previous electric bikes shown.

The 1939 McDonald front hub-motor E-bike.

The 1939 McDonald front hub-motor E-bike.


1946 Stefanos

The next patent up is actually still quite a viable configuration. It’s Patent No. US2457430 from 1946 by Argyris Stefanos. A centrally-mounted cylindrical motor drives a 90-degree reduction, which then runs in-line with the bikes drive chain. The motors’ drive-sprocket is mounted to a freewheel that is built into the system so the motor isn’t back-driven when the power is off and the bike is pedaled.

I could see these being made today! I would mount the motor just in front of the downtube, near the bottom bracket…with the motor mounted lower and the drive sprocket on top, just high enough to miss the top of the chainring. This lower mounting would free the frame triangle to allow the largest possible battery to be mounted there.

The 1946 Stefanos drive.

The 1946 Stefanos drive.


1950 Tucker

1950 Tucker geared hub-motor. I’m not really sure how this geared hub is materially different than the 1896 Theryc patent shown above. It is a radial-flux, induction motor with brushes. It does use at least two planet gears (and possibly four), which is an improvement. Also, the planet gears are stepped, so they provide a dual reduction, which is certainly a performance improvement, since this would allow the motor to spin much faster than a single geared reduction.

The 1950

The 1950 Tucker geared hub motor.

1975 Panasonic

Here’s a pic a 1975 Panasonic E-bike, which uses 24V of lead-acid car batteries. I suspect it is a bottom bracket drive that allows the motor to use the bicycles gears, but I am still looking for information about these. Thanks to E-biker “Kulle” from www.pedelecforum.de for the link.

The 1972 Panasonic E-bike.

The 1975 Panasonic E-bike.


1975 Kinzel

This next E-bike is low-powered, but it has some interesting features. It’s from 1975, and it is patent No. 3884317, filed by Augustus B. Kinzel.

A large generator is mounted in the bottom-bracket (BB). If you look closely, there is a battery…a tiny battery just behind the seat. Driving the wheels are two small motors (Items # 16A and 16B). The fact that this is a 2-wheel-drive ebike is innovative and interesting.

The patent doesn’t specifically mention a chain, but if a chain was added to a standard one-speed rear hub, then the electrically motored part could be used for a mild-assist on the occasional hill. If that was the intent, then this system actually makes a lot of sense, since the motors that are shown appear too small to be the only means of propulsion.

You would pedal the bicycle on flat land in the conventional way, all the while charging the battery. When a hill presents itself, the two small motors would provide a few minutes of assistance.

The 1975 Kinzel E-bike, with the motor built into the bottom-bracket.

The 1975 Kinzel E-bike, with a generator built into the bottom-bracket, and a small battery just under the seat.

Since this is an inrunner, it would have shed heat well, but...inrunners benefit greatly from higher RPMs that are reduced down, and this motor spins at the speed of the pedals. A steaming mess of contradictions.

Here is a cutaway drawing of the BB-mounted generator.

Thanks to the commenter “Mulp” below, for correcting my previous mis-understanding of this drive.


1977 Davidson-Leighton

This last year has seen a boom in modern Bottom-Bracket (BB) drives. Names as prestigious as Bosch and Panasonic have spent significant amounts of time and money to develop the best possible system for mass-production. They came to the conclusion that to get the best performance from modest power levels like 250W, a BB-drive that gives the motor the use of the bikes gears is the best way to go.

The gasoline crisis of 1973 started a decade of innovative thought, and at least one person came to the same conclusion as Bosch and Panasonic, and he did it years before computer-aided-design (CAD) was available to the average person. Patent No. US4030562 is from 1977 by Charles P.D. Davidson and Peter W. Leighton. It is a compact BB-drive with a cylindrical motor driving a 90-degree reduction, and it incorporates a freewheel so the motor is not driven when you pedal with the motor unpowered.

The 1977

The 1977 Davidson-Leighton BB-drive.


1981 Gelhard

Here is a patent of a longtail mid-drive from 1981. The builder is Egon Gelhard from Koln, Germany.


The 1981 Gelhard longtail mid-drive



1982 Restelli

This patent from 1982 from Amedeo A. Restelli is interesting. It is a front hub-motor, but even though it appears to be a geared hub (nothing special), it also incorporates a clutch and specifies that the mechanism creates a 2-speed transmission. First gear is the geared function, and when the clutch is engaged, the motor becomes a direct-drive. Items labeled 19 are the brushes, 20 is the commutator, 16’s are the permanent magnets, 22 is the sun gear, 28’s are the pins at the center of the planet gears, and 21 is the clutch. Items that are drawn as a large “X” are the cross-sections of bearings.

The 1985 bofelli hub-motor. This just might be an idea that should be revived...a 2-speed hub-motor!

The 1982 Restelli hub-motor. This just might be an idea that should be revived…a 2-speed hub-motor!

1989 Toriser

The 1989 Toriser was an Austrian university test-mule to gather data, they also developed a rear wheel non-hub drive. Pic courtesy of Hannes Neupert / www.ExtraEnergy.org Archive


The 1989 Toriser


1989 Hercules

The Hercules company is based in Germany. Since 1938, they have been making kits and also turn-key powered bicycles that used single-cylinder gasoline engines that were attached to the left side of the rear wheel. In 1989, they introduced the “Electra”, which was an easy switch from a gasoline engine to an electric motor in the same place.

It definitely has a two-stage reduction. Here is a close-up pic of the cover. Here is a close-up pic of the chain secondary. Here is a close up pic of the 24V brushed motor. The pic below is courtesy of Hannes Neupert / www.ExtraEnergy.org Archive

The 1989 Hercules Electra.

The Hercules Electra. This partuclar model is from 1995

1989 Sanyo

In 1989 Sanyo produced the Enacle, which used NiCd batteries instead of lead-acid, and that was a big advance at the time. The model shown below is from 1995. Pic courtesy of Hannes Neupert / www.ExtraEnergy.org Archive

The 1989 Sanyo ENACLE.

The 1995 Sanyo ENACLE. Please contact us if you have a picture of the original 1989 version.

1990 Kutter

In 1990, Michael Kutter developed what some people feel is the first Pedelec (PEDal-ELECtric). It later came to be referred to as Pedal Assist System (PAS), where there is no throttle, but the pedaling alone causes the motor to assist the rider. The first production models were sold in 1992 under the Dolphin name for the Swiss company Velocity, but they did not survive.

Pic courtesy of Hannes Neupert / www.ExtraEnergy.org Archive

Michael Kutter in 1989 with his first and second pedelec prototypes.

Michael Kutter in 1995 with his second and third pedelec prototypes. The first working prototype was built in 1990.

1993 Yamaha

Here is the 1993 Yamaha electric bicycle, which included the now popular Pedal-Assist-System (PAS)

The 1993 Yamaha PAS.

The 1993 Yamaha PAS.

1995 Flyer

This entry is from the Flyer Bicycle company in 1995. It incorporates a BB-drive and a freewheeling chainring.

The 1995 Biketek Flyer

The 1995 BK Tech Flyer, the company was later named Bike Tec

1999 EV Global

This ebike does use neodymium magnets, but it still used the old-style affordable lead-acid batteries. Current owners who have upgraded the battery to a modern lithium pack find them to be quite useful, in spite of their age.

Here is our article on the EV Global (click here).

The Electric Vehicle Global ebike

In my opinion, the modern era of electric bicycles started just after 1995, when the computer boom made powerful neodymium magnets mass-produced, which brought their prices down. Neodymium magnets have been around for a while, and they were used in the hard-drives that stored digital files. Once neo’s became cheaper, electric bicycle motors got a power boost that provided the type of performance that get’s buyers excited.

Another big influence was about the same time when cordless tools and laptop computers moved up to using Lithium batteries. The mass production of lithium batteries brought their prices down. The combination of strong Neo magnets and lithium batteries both becoming more affordable…that was the turning point between electric bike “history”, and our modern era.

Written by Ron/Spinningmagnets, November 2013

Grew up in Los Angeles California, US Navy submarine mechanic from 1977-81/SanDiego. Hydraulic mechanic in the 1980's/Los Angeles. Heavy equipment operator in the 1990's/traveled to various locations. Dump truck driver in the 2000's/SW Utah. Currently a water plant operator since 2010/NW Kansas


Leave a Reply